Exercise 1: Solubility of anhydrite and gypsum

Determine the state of saturation of seawater of normal salinity with respect to anhydrite (CaSO₄(s)).

$${Ca^{2+}} = 2.4 * 10^{-3} M$$

$${SO_4^{2-}} = 1.9 * 10^{-3} M$$

$$K_{s0} = 4.2 * 10^{-5}$$

Exercise 1: Solution

IAP =
$$\{M(aq)\}_{actual}^{n} \{X(aq)\}_{actual}^{m} = 4.7 * 10^{-6}$$

 $K_{s0} = 4.2 * 10^{-5}$

Hence, $K_{s0} > IAP$ and the solution is undersaturated with respect to anhydrite.

Exercise 2: Ion activity

Meret Aeppl

What are the activity and concentration of Na⁺ in a solution of 1 mM NaCl?

Exercise 2: Solution

First, determine I. Before (example 1 from 2 slides ago), we found that in a 1 mM NaCl solution:

$$I = 0.5 * (C_{Na+} * z^2_{Na+} + C_{Cl-} * z^2_{Cl-}) = 0.5 * (10^{-3} * 1^2 + 10^{-3} * (-1)^2) = 10^{-3} M$$

Then determine γ_i :

$$log \gamma_i = -A \cdot z_i^2 \left(\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.2 \cdot I \right) = -0.5 \cdot 1 \cdot \left(\frac{\sqrt{0.001}}{1 + \sqrt{0.001}} - 0.2 \cdot 0.001 \right) = -0.01523$$

$$\gamma_i = 10^{-0.01523} = 0.966$$

Therefore, $\{Na^+\}$ = 0.966 mM, whereas $[Na^+]$ = 1 mM

Exercise 3: Solubility in natural waters

- Which factors influence metal. solubility?
- Does an increase/decrease of these factors have a positive or negative effect on solubility?

Solubility of metals in natural waters

Temperature

- Solubility of salts increases with increasing temperature
- Entropy effect

Salinity

- Solubility increases with increasing salinity
- Due to inter-ionic interactions

pH

- Important for minerals that have anions that can be protonated/deprotonated
- Protonation of basic anion (lower pH) increases solubility

Complexation

- Solubility increases with increasing complexation
- Due to masking of metal ion

Exercise 4: Multiple solid phases

1eret Aeppli

Consider an anoxic water at pH 6.8 and {HCO₃-} = 10^{-4} eq L⁻¹ (assume γ_i = 1).

Is the solubility of Fe(II) dominated by siderite (FeCO₃(s)) or Fe(OH)₂(s)? Note that the solid that gives the lowest concentration of soluble Fe(II) controls the solubility for a given set of conditions.

$$FeCO_3(s) = Fe^{2+} + CO_3^{2-}$$

$$H^+ + CO_3^{2-} = HCO_3^-$$

$$Fe(OH)_2(s) = Fe^{2+} + 2OH^{-}$$

$$2H^+ + 2OH^- = 2H_2O$$

$$\log K_{s0} = -10.4$$

$$-\log K_2 = +10.1$$

$$\log K_{s0} = -14.5$$

$$-2\log K_w = +27.8$$

Exercise 4: Solution

FeCO₃(s)

FeCO₃(s) = Fe²⁺ + CO₃²⁻ log
$$K_{s0}$$
 = -10.4 eq. 1
H⁺ + CO₃²⁻ = HCO₃⁻ -log K_2 = +10.1 eq. 2
FeCO₃(s) + H⁺ = Fe²⁺ + HCO₃⁻ log *K_s = -0.3 1+2 combined
log [Fe²⁺] = log *K_s - pH - log [HCO₃⁻]
At pH 6.8, [Fe²⁺] = [Fe(II)] and thus log [Fe(II)] = -3.1

Fe(OH)₂(s)

Fe(OH)₂(s) = Fe²⁺ + 2OH-
$$\log K_{s0}$$
 = -14.5
2H⁺ + 2OH- = 2H₂O $-2\log K_w$ = +27.8
Fe(OH)₂(s) + 2H⁺ = Fe²⁺ + 2H₂O $\log {}^*K_s$ = +13.3
Thus, $\log [Fe^{2+}] = \log {}^*K_s - 2pH$ and $\log [Fe(II)] = -0.3$

Because [Fe(II)] is smaller for hypothetical equilibrium with FeCO₃(s) than with Fe(OH)₂, FeCO₃(s) is more stable than Fe(OH)₂(s).

Exercise 5: Flocculation

Flocculation is a process by which a chemical coagulant added to the water acts to facilitate bonding between particles, creating larger aggregates which are easier to separate. The method is widely used in water treatment plants.

Exercise 5: Flocculation

Aluminium is often used as a flocculant in water treatment. To achieve the best results, the pH of minimum solubility should be used. To identify the pH of minimum solubility, sketch the aluminum speciation as a function of pH in a log-log plot.

$AI(OH)_3(s) = AI^{3+} + 3 OH^{-}$	$\log K_{s0} = -33.9$	eq. 1
$AI^{3+} + H_2O = AI(OH)^{2+} + H^+$	$log *K_1 = -5$	eq. 2
$AI^{3+} + 2H_2O = AI(OH)_2^+ + 2H^+$	$\log *\beta_2 = -10.13$	eq. 3
$AI^{3+} + 3H_2O = AI(OH)_3(aq) + 3H^+$	$\log *\beta_3 = -16.63$	eq. 4
$AI^{3+} + 4H_2O = AI(OH)_4^- + 4H^+$	$\log *\beta_4 = -22.2$	eq. 5
$H_2O = H^+ + OH^-$	$\log K_{\rm w} = -14.0$	eq. 6

Exercise 5: Flocculation

From eq. 6 it follows that $K_w = [OH^-][H^+]$, thus $[OH-] = K_w / [H^+]$

Fill this expression into eq. 1 to get $[Al^{3+}] = K_{s0} [H^+]^3 / K_w^3$

Taking logs: $log [Al^{3+}] = log(K_{s0} K_{w}^{-3}) - 3 pH = 8.1 - 3 pH$

From eq. 2 it follows that $[AI(OH)^{2+}] = [AI^{3+}] *K_1 / [H^+] = K_{s0} *K_1 [H^+]^2 / K_w^3$

And thus $\log [AI(OH)^{2+}] = \log(K_{s0} K_{w}^{-3} * K_{1}) - 2 pH = 3.1 - 2 pH$

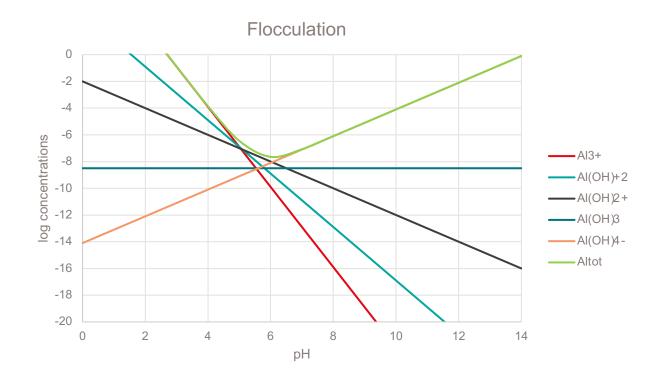
 $AI(OH)_2^+ = [AI^{3+}] * \beta_2 / [H^+]^2 = K_{s0} * \beta_2 [H^+] / K_w^3$

 $\log [Al(OH)_2^+] = \log(K_{s0} K_{w^{-3}} * \beta_2) - pH = -2.0 - pH$

 $AI(OH)_3 = [AI^{3+}] * \beta_3 / [H^+]^3 = K_{s0} * \beta_3 / K_w^3$

 $\log [AI(OH)_3] = \log(K_{s0} K_w^{-3} * \beta_3) = -8.5$

 $AI(OH)_4^- = [AI^{3+}] * \beta_4 / [H^+]^4 = K_{s0} * \beta_4 [H^+]^{-1} / K_w^3$


 $\log [Al(OH)_4] = \log(K_{s0} K_{w}^{-3} * \beta_4) + pH = -14.1 + pH$

Meret Aeppli

Exercise 5: Solution

3

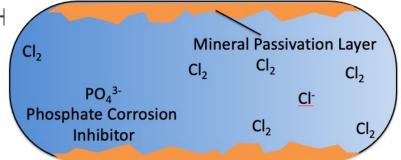
The best results will be obtained at pH 6 when Al_{tot} is lowest.

Flint water crisis- before 2014

Phosphate (PO₄³⁻) was added to precipitate all metal cations and inhibit corrosion in the Detroit plant.

- a. What reactions can phosphate (use Na_3PO_4) undergo with $FeCl_2(aq)$ and $Pb(NO_3)_2(aq)$ in solution?
- b. What effect does the addition of PO₄³⁻ have on pH?

Flint water crisis- before 2014


.1.1.

a. Phosphate formed solid phases with Fe(II) and Pb(II) which resulted in the formation of a passivation layer in the pipes:

$$2Na_3PO_4 + 3FeCl_2 \rightleftharpoons Fe_3(PO_4)_2(s) + 6NaCl$$

 $2Na_3PO_4 + 3Pb(NO_3)_2 \rightleftharpoons Pb_3(PO_4)_2(s) + 6NaNO_3$

b. Furthermore, phosphate buffered pH

$$PO_4^{3-} + H_2O \rightleftharpoons HPO_4^{2-} + OH^{-}$$

 $PO_4^{3-} + H^{+} \rightleftharpoons HPO_4^{2-}$
 $Pb^{2+} + 2OH^{-} \rightleftharpoons Pb(OH)_2(s)$

Flint water crisis- after 2014

Flint's water supply was switched to the city's own water treatment plant on the Flint River. Phosphate was NOT added to the Flint River water in the new plant.

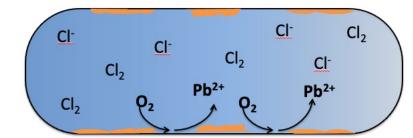
- a. What effects does this have on the passivation layer in the pipes and why?
- b. In the absence of a passivation layer, what other chemical reactions can occur between the water and metals in the pipes?

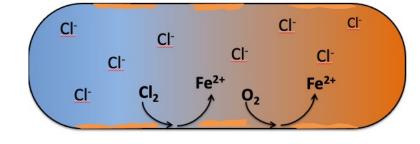
Flint water crisis- after 2014

- a. Effect of phosphate removal:
 - Removal of dissolved Fe^{2+/3+} and Pb^{2+/4+} no longer possible
 - Acidic river water directly dissolves passivation layer by neutralizing OH
 - Result: The passivation layer dissolved, exposing the metal pipes.
- b. This lead to corrosion of the pipes as metals came in contact with oxidants O₂ and Cl⁻
 - Pb is oxidized by O₂ to Pb²⁺ which is mobile
 - Iron corrosion (reaction with O₂) leads to rust-colored water
 - Exposed iron reduced free chlorine which is used as disinfectant in this system

Flint water crisis- after 2014

Redox reactions will be the topic of the next class!


Lead pipes: lead is oxidized by dissolved oxygen


$$2Pb(s) + O_2 + 4H^+ \rightleftharpoons 2Pb^{2+}(aq) + 2H_2O$$

$$2Fe(s) + O_2 + 4H^+ \rightleftharpoons 2Fe^{2+}(aq) + 2H_2O$$

Iron pipes: iron is oxidized by dissolved oxygen and chlorine. Precipitation of iron oxides turns water rust colored.

$$Fe(s) + Cl_2 \rightleftharpoons FeCl_2$$

